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(Same) Authorship Verification

e Determine if two texts have the same author

e Counter
Misinformation
Plagiarism
Harassment
Impersonation
Criminal activities
Falsified text

e Privacy & Anonymity
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For Martin Luther King Jr.
weekend, the Knudsons and
the Myers are going up
north to a cross-country
ski resort called
Maplelag. This is a yearly
tradition and I won't have
any new posts to my blog
until at least Sunday
night (I'll probably have
it updated on Monday
maybe) . Well I hope all of
you have a great three-day
weekend and have tons of

fun!

one of my exes got a tattoo
while i1 was dating him, it was
probably the stupidest one i've
ever seen. he wanted superman
(big deal, right?).. only he
didn't want superman the way
everyone else wanted superman.
he wanted the whole superman.
he got it. it looked.. silly.
to be honest, it was one of the
poorest attempts at being
different that i've ever seen.
'It's like.. instead of saying,
'i 1like superman', you're
saying, 'wow, 1 really like
that super man'.'
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Authorship Verification

e Lexical/Linguistics e Stylometry
o Language o Statistical variations in
o Words writing style
o Morphology, m Features
syntax, phonetics, e We'll get back to
and semantics this!

o Transformers/LLM
Topical information :(
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Authorship Verification
ropioatinformation-{

Training data diversity!
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Final Dataset

[test1 ] [testz] [score]

]

Cleaning and Processing

' ™
Split into train:test:val
O >

( Make balanced and g
unique

~

Replace named
entities

]

12 Datasets




Table 1: Summary of AV and AA datasets used

Dataset Text Form Pairs Used* Average Chars** Length  Formality Named Entities
Reuters News Articles 1202 2770 Medium Formal Replaced
Blogs Blog Posts 58930 1086 Short Informal  Replaced
Victorian Book Excerpts 10718 4923 Long Formal Replaced
arXiv Paper Abstracts 704 803 Short Formal Replaced
DarkReddit Reddit Comments 1028 2751 Medium Informal  Replaced
BAWE Student Writing 1150 14702 Long Formal Replaced
IMDB62 Movie Reviews 30982 1668 Short Informal  Replaced
PAN11 Enron Emails 4650 300 Short Mix Replaced
PAN13 Various 120 7143 Long Mix Replaced
PAN14 Novels and Essays 900 15843 Long Formal Not Replaced
PANI15 Various 1265 3167 Medium Mix Not Replaced
PAN20 Fanfiction 275409 21473 Long Informal  Not Replaced

*The amount of pairs of text from this dataset that were in the final compiled dataset
* Average amount of characters in each text used in the final compiled dataset
**General length of each text in the dataset
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Feature Vector
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Feature Vector e PAN2021 - Weerasinghe et al.
(Feature lmportances\ ® (Large B 3rd' Sma” B 1 St)
; ; e Binary classification
Logistic R i
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) \ e Input to classifier is a feature vector
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Feature Vector

1 e Preprocessing
Feature Vector o Tokenization

i o Part-of-Speech (POS) Tagging
o POS Tag Chunking

Feature Importances

’Logistciclzag;%;erssion‘ e Features Extracted
) ’ o Stylometric
Feature Extraction H CharaC'[er N-grams

m Average number of characters per word
J m Distribution of word-lengths, Vocabulary
5 Richness

m Spelling

Preprocess
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Feature Vector

happy birthday to you happy birthday to you twinkle twinkle little star / how i wonder what
happy birthday!!! you are up / above the world so high / like a
diamond in the sky
7 Z



Feature Vector

Top 10 Features

e above: 31.6957
e hap:22.8684
« bov: 16.7269 Probability Same Author

*  ppy:16.5476 (Feature Vector)
e across the NN: 13.8071

0.8171

e NP JJNP:12.6481

e PRPJJ:12.6132
e app:11.7819

e rld: 10.9437

e py:10.5696
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Embedding

BERT
e Prasad and Chakkaravarthy (2022)
e Siamese network
o Sub-networks
o neural network that uses the same weights
while working on two different input vectors
e Contrastive Loss



Embedding

BERF -> mean pooling



Embedding
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Cosine score: 0.9169589281082153
Probability that the output is 1: 0.5107
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Embedding

The Cauchy problem for a coupled PRODUCT and

Embedding PERSON system is shown to be globally well-posed
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Embedding
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Embedding

Attention Highlighting Probability Same Author
(Embedding)
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Website

https://same-writer-detector.streamlit.app/

Transparent Authorship Verification

Enter the first text: Enter the second text:
Vi 7~
Go (Embedding) Go (Feature Vector)
Attention Highlighting Top 10 Features

Probability Same Author Probability Same Author
(Embedding) (Feature Vector)

Disclaimer: Use these results at your own risk. Models may give inaccurate results.
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https://same-writer-detector.streamlit.app/

Discussion

Ethics
e lack of privacy and anonymity

e Repression
e AV andAA

Limitations
e Compute
e T[ime
e Overfitting & Accuracy
e Datasets

Discussion



Bonus

Students (24) Teachers (22) GPT4-o0 Claude-3 Sonnet
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Bonus

Students (24) Teachers (22) GPT4-o0 Claude-3 Sonnet

0.616 0.767 0.7 0.9
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